Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The study of transcription factors that determine specialised neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electro-physiologically excitable cells that link the oxygen content of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by the Type I cells of the carotid body and recent work has revealed one isoform of the transcription factor HIF, HIF-2α, to have a non-redundant role in the development and function of that organ. Here we show that the activation of HIF-2α, including isolated overexpression alone, is sufficient to induce oxygen chemosensitivity in the otherwise unresponsive adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues that resemble the foetal organ of Zuckerkandl and also manifest oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of classes of genes that are ordinarily characteristic of the carotid body, including G-protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking two major oxygen sensing systems.

Original publication

DOI

10.1172/JCI174661

Type

Journal article

Journal

J Clin Invest

Publication Date

06/08/2024

Keywords

Development, Embryonic development, Hypoxia, Oncology