Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzing the differences and commonalities across myriads of genomic breakage datasets, we extract the sequence-linked rules and patterns behind DNA fragility. We show the overall deconvolution of the sequence influence into short-, mid- and long-range effects, and the stressor-dependent differences in defining the range and compositional effects on DNA fragility. We summarize and release our feature compendium as a library that can be seamlessly incorporated into genomic machine learning procedures, where DNA fragility is of concern, and train a generalized DNA fragility model on cancer-associated breakages. Structural variants (SVs) tend to stabilize regions in which they emerge, with the effect most pronounced for pathogenic SVs. In contrast, the effects of chromothripsis are seen across regions less prone to breakages. We find that viral integration may bring genome fragility, particularly for cancer-associated viruses. Overall, this work offers novel insights into the genomic sequence basis of DNA fragility and presents a powerful machine learning resource to further enhance our understanding of genome (in)stability and evolution.

Original publication

DOI

10.1093/nar/gkae914

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

23/10/2024