Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Edible insects have been proposed as a novel and sustainable source of protein and other essential nutrients for human consumption but nutrient absorption efficiency is still uncertain. We investigated zinc absorption from house crickets (Acheta domesticus) in a single-center and single-blinded cross-over study with children aged 24-36 months old in Kenya from September-November 2021. For this, children were randomized to consume two different experimental meals labeled with stable isotopes of zinc (Zn) at two different days, separated by a wash-out period of one month. Primary endpoints were the differences in amount of absorbed zinc (AZ) from maize-based meals enriched with intrinsically 67Zn-labeled house crickets (2.61 mg Zn, n = 28) in comparison with meals enriched with 68Zn (low-enriched: 0.90 mg Zn, n = 29); high-enriched: 3.24 mg Zn, n = 28) or with intrinsically 67Zn-labeled low-chitin cricket flour (2.51 mg Zn, n = 25), whereas the secondary endpoints were the differences in fractional zinc absorption. We found that AZ from meals with whole crickets (geometric mean: 0.36 mg; 95%CI: 0.30, 0.43) was 2.6 times higher than from low-enriched maize meals (0.14 mg; 0.11, 0.16; P 

Original publication

DOI

10.1038/s41467-025-56259-1

Type

Journal

Nat Commun

Publication Date

24/01/2025

Volume

16

Keywords

Zea mays, Zinc, Humans, Animals, Kenya, Gryllidae, Zinc Isotopes, Female, Male, Child, Preschool, Cross-Over Studies, Food, Fortified, Edible Insects, Flour, Meals