Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract The dysregulation of gene expression programs in the human atria during persistent atrial fibrillation (AF) is not completely understood. Here, we reanalyze bulk RNA-sequencing datasets from two studies (N = 242) and identified 755 differentially expressed genes in left atrial appendages of individuals with persistent AF and non-AF controls. We combined the bulk RNA-sequencing differentially expressed genes with a left atrial appendage single-nucleus multi-omics dataset to assign genes to specific atrial cell types. We found noncoding genes at the IFNG locus (LINC01479, IFNG-AS1) strongly dysregulated in cardiomyocytes. We defined a gene expression signature potentially driven by androgen receptor signaling in cardiomyocytes from individuals with AF. Cell-type-specific gene expression modules suggested an increase in T cell and a decrease in adipocyte and neuronal cell gene expression in AF. Lastly, we showed that reducing NR4A1 expression, a marker of a poorly characterized human atrial fibroblast subtype, fibroblast activation markers, extracellular matrix remodeling and cell proliferation decreased.

Original publication

DOI

10.1038/s44161-025-00626-0

Type

Journal

Nature Cardiovascular Research

Publisher

Springer Science and Business Media LLC

Publication Date

25/03/2025