Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The role of genes in normal birth-weight variation is poorly understood, and it has been suggested that the genetic component of fetal growth is small. Type 2 diabetes genes may influence birth weight through maternal genotype, by increasing maternal glycemia in pregnancy, or through fetal genotype, by altering fetal insulin secretion. We aimed to assess the role of the recently described type 2 diabetes gene TCF7L2 in birth weight. We genotyped the polymorphism rs7903146 in 15,709 individuals whose birth weight was available from six studies and in 8,344 mothers from three studies. Each fetal copy of the predisposing allele was associated with an 18-g (95% confidence interval [CI] 7-29 g) increase in birth weight (P=.001) and each maternal copy with a 30-g (95% CI 15-45 g) increase in offspring birth weight (P=2.8x10-5). Stratification by fetal genotype suggested that the association was driven by maternal genotype (31-g [95% CI 9-48 g] increase per allele; corrected P=.003). Analysis of diabetes-related traits in 10,314 nondiabetic individuals suggested the most likely mechanism is that the risk allele reduces maternal insulin secretion (disposition index reduced by ~0.15 standard deviation; P=1x10-4), which results in increased maternal glycemia in pregnancy and hence increased offspring birth weight. We combined information with the other common variant known to alter fetal growth, the -30G-->A polymorphism of glucokinase (rs1799884). The 4% of offspring born to mothers carrying three or four risk alleles were 119 g (95% CI 62-172 g) heavier than were the 32% born to mothers with none (for overall trend, P=2x10-7), comparable to the impact of maternal smoking during pregnancy. In conclusion, we have identified the first type 2 diabetes-susceptibility allele to be reproducibly associated with birth weight. Common gene variants can substantially influence normal birth-weight variation.

Original publication

DOI

10.1086/518517

Type

Journal article

Journal

Am J Hum Genet

Publication Date

06/2007

Volume

80

Pages

1150 - 1161

Keywords

Alleles, Birth Weight, Diabetes Mellitus, Type 2, Female, Genetic Variation, Genotype, Gestational Age, Glucokinase, Humans, Male, Polymorphism, Genetic, Pregnancy, Risk Factors, TCF Transcription Factors, Transcription Factor 7-Like 2 Protein