Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dendritic cell (DC)-based immunization represents a promising approach for the immunotherapy of cancer. The optimal conditions required to prepare DCs remain to be defined. Monocytes incubated in the presence of interferon (IFN)-beta and interleukin (IL)-3 give rise to a distinct type of DCs (IFN-beta/IL-3 DCs) that are particularly efficient at eliciting IFN-gamma and IL-5 production by allogeneic helper T cells. We assessed the capacity of this new type of DCs to prime antigen-specific naive CD8(+) T cells and compared them to the conventional DCs differentiated in the presence of granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-4 (GM-CSF/IL-4 DCs). We demonstrate that IFN-beta/IL-3 DCs matured by TLR3 or CD40 ligation efficiently prime Melan-A(26-35)-specific CD8(+) T cells in vitro, at a similar level as GM-CSF/IL-4 DCs. Activated antigen-specific CD8(+) T cells produced IFN-gamma and displayed potent cytotoxic activity against peptide-pulsed target cells. Expansion of CD8(+) T cell numbers was generally higher following priming with CD40-L than with polyinosinic-polycytidylic acid (poly I:C) matured DCs. Cytolytic activity was induced by both maturing agents. These data indicate that IFN-beta/IL-3 DCs represent a promising cell population for the immunotherapy of cancer.

Original publication

DOI

10.1111/j.1365-2249.2005.02700.x

Type

Journal article

Journal

Clin Exp Immunol

Publication Date

03/2005

Volume

139

Pages

468 - 475

Keywords

CD40 Ligand, CD8-Positive T-Lymphocytes, Cancer Vaccines, Cell Differentiation, Cell Line, Tumor, Dendritic Cells, Flow Cytometry, Humans, Interferon-beta, Interferon-gamma, Interleukin-3, Interleukin-5, Lymphocyte Activation, Lymphoma, T-Lymphocytes, Cytotoxic