Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Lipid-lowering treatment with statins is one of the most effective therapeutic strategies in cardiovascular medicine because they reduce cardiovascular risk in both primary and secondary prevention. Despite the well-established links between low-density lipoprotein and cardiovascular risk, the clinical benefit from statin treatment is not fully explained by their lipid-lowering potential. A number of pleiotropic effects of statins have been described over the past decade, and their ability to suppress global oxidative stress is probably one of the most important mechanisms by which they exert their beneficial effects on the cardiovascular system. In this Forum, there are review articles discussing the molecular mechanisms by which statins modify redox signaling in the vasculature and the heart. They exert direct effects on the vascular wall and the myocardium or indirect by targeting the interactions between the cardiovascular system and adipose tissue or circulating cell types. The review articles in this Forum follow a translational approach and link the molecular mechanisms by which statins modify cardiovascular redox signaling with their clinical benefit in the prevention and treatment of cardiovascular diseases.

Original publication

DOI

10.1089/ars.2014.5836

Type

Journal article

Journal

Antioxid Redox Signal

Publication Date

10/03/2014

Volume

20

Pages

1195 - 1197

Keywords

Cardiovascular Agents, Cardiovascular System, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Oxidation-Reduction, Oxidative Stress, Signal Transduction