Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND PURPOSE: Evidence from epidemiological studies points to differences in factors predisposing to stroke by age and sex. Whether these arise because of different genetic influences remained untested. Here, we use data from 4 genome-wide association data sets to study the relationship between genetic influence on stroke with both age and sex. METHODS: Using genomic-relatedness-matrix restricted maximum likelihood methods, we performed 4 analyses: (1) we calculated the genetic correlation between groups divided by age and (2) by sex, (3) we calculated the heritability of age-at-stroke-onset, and (4) we evaluated the evidence that heritability of stroke is greater in women than in men. RESULTS: We found that genetic factors influence age at stroke onset (h2 [SE]=18.0 [6.8]; P=0.0038), with a trend toward a stronger influence in women (women: h2 [SE]=21.6 [3.5]; Men: h2 [SE]=13.9 [2.8]). Although a moderate proportion of genetic factors was shared between sexes (rG [SE]=0.68 [0.16]) and between younger and older cases (rG [SE]=0.70 [0.17]), there was evidence to suggest that there are genetic susceptibility factors that are specific to sex (P=0.037) and to younger or older groups (P=0.056), particularly for women (P=0.0068). Finally, we found a trend toward higher heritability of stroke in women although this was not significantly greater than in men (P=0.084). CONCLUSIONS: Our results indicate that there are genetic factors that are either unique to or have a different effect between younger and older age groups and between women and men. Performing large, well-powered genome-wide association study analyses in these groups is likely to uncover further associations.

Original publication

DOI

10.1161/STROKEAHA.115.009816

Type

Journal article

Journal

Stroke

Publication Date

11/2015

Volume

46

Pages

3042 - 3047

Keywords

epidemiologic studies, genetics, genome-wide association study, sex, stroke, Adult, Aged, Aged, 80 and over, Aging, Brain Ischemia, Cohort Studies, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Sex Characteristics, Stroke