Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many glucocorticoid (Gc) actions are of rapid onset and therefore require acute regulation of intracellular signaling cascades. Integration of diverse extracellular signals requires cross-talk between intracellular pathways, suggesting the existence of nodes for signal interaction, such as the specialized membrane microdomains caveolae. We have identified rapid Gc-dependent phosphorylation of caveolin, and protein kinase B (PKB)/Akt, in the lung epithelial cell line A549 and found this was dependent on src kinases. There was also activation of PKB downstream molecules glycogen synthase kinase-3beta, and mammalian target of rapamycin. Subcellular fractionation colocalized glucocorticoid receptor (GR) and c-src to caveolin-containing membrane fractions. Coimmunoprecipitation studies also identified interactions between GR and caveolin and suggested that the activation function 1 domain within the GR may serve to support an interaction between GR and caveolin. Disruption of lipid raft formation, impairment of caveolin function using dominant-negative caveolin, down-regulation of caveolin-1 using short hairpin RNA or complete ablation of caveolin-1 prevented Gc-induced activation of PKB. Loss of caveolin-1 also prevents Gc activation of glycogen synthase kinase-3beta and mammalian target of rapamycin. In contrast, caveolin interference/down-regulation had no effect on Gc transactivation. Functional analysis of caveolin-1 knockdown and knockout cells identified profound loss of Gc-mediated growth inhibition compared with controls, with a requirement for caveolin in order for Gc to regulate cell cycle progression. Therefore, disruption of caveolae leads to dissociation of Gc action, with impaired induction of PKB activation, and cell growth inhibition, but with negligible effects on Gc transactivation. These observations have implications for understanding the diverse physiological actions of Gc.

Original publication

DOI

10.1210/me.2007-0154

Type

Journal

Mol Endocrinol

Publication Date

06/2008

Volume

22

Pages

1320 - 1330

Keywords

Animals, Caveolin 1, Cell Cycle, Cell Membrane, Cell Proliferation, Cells, Cultured, Dexamethasone, Glucocorticoids, Humans, Membrane Microdomains, Mice, Phosphatidylinositol 3-Kinases, Phosphorylation, Protein Binding, Proto-Oncogene Proteins c-akt, Proto-Oncogene Proteins pp60(c-src), Receptors, Glucocorticoid, Signal Transduction, Time Factors, Transcriptional Activation