Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34(-), there are multiple, nonhierarchically arranged CD34(+) and CD34(-) LSC populations. Within CD34(-) and CD34(+) LSC-containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34(-) LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34(-) mature granulocyte-macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis.

Original publication

DOI

10.1084/jem.20151775

Type

Journal article

Journal

J Exp Med

Publication Date

25/07/2016

Volume

213

Pages

1513 - 1535

Keywords

Animals, Antigens, CD34, Granulocyte-Macrophage Progenitor Cells, Heterografts, Humans, Leukemia, Myeloid, Acute, Male, Mice, Mice, Inbred NOD, Mice, SCID, Neoplasm Proteins, Neoplasm Transplantation, Neoplastic Stem Cells