Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo.
Mimmack ML., Gallagher MP., Pearce SR., Hyde SC., Booth IR., Higgins CF.
Periplasmic binding protein-dependent transport systems mediate the accumulation of many diverse substrates in prokaryotic cells. Similar transport systems, including the P-glycoprotein responsible for multidrug resistance in human tumors, are also found in eukaryotes. The mechanism by which energy is coupled to the accumulation of substrate by these transport systems has been controversial. In this paper we demonstrate that ATP hydrolysis occurs in vivo concomitantly with transport. These data strongly suggest that ATP hydrolysis directly energizes substrate accumulation by these transport systems. The apparent stoichiometry is one to two molecules of ATP hydrolyzed per molecule of substrate transported.