Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by mutations in the Krebs cycle enzyme fumarate hydratase (FH). It has been proposed that "pseudohypoxic" stabilization of hypoxia-inducible factor-α (HIF-α) by fumarate accumulation contributes to tumorigenesis in HLRCC. We hypothesized that an additional direct consequence of FH deficiency is the establishment of a biosynthetic milieu. To investigate this hypothesis, we isolated primary mouse embryonic fibroblast (MEF) lines from Fh1-deficient mice. As predicted, these MEFs upregulated Hif-1α and HIF target genes directly as a result of FH deficiency. In addition, detailed metabolic assessment of these MEFs confirmed their dependence on glycolysis, and an elevated rate of lactate efflux, associated with the upregulation of glycolytic enzymes known to be associated with tumorigenesis. Correspondingly, Fh1-deficient benign murine renal cysts and an advanced human HLRCC-related renal cell carcinoma manifested a prominent and progressive increase in the expression of HIF-α target genes and in genes known to be relevant to tumorigenesis and metastasis. In accord with our hypothesis, in a variety of different FH-deficient tissues, including a novel murine model of Fh1-deficient smooth muscle, we show a striking and progressive upregulation of a tumorigenic metabolic profile, as manifested by increased PKM2 and LDHA protein. Based on the models assessed herein, we infer that that FH deficiency compels cells to adopt an early, reversible, and progressive protumorigenic metabolic milieu that is reminiscent of that driving the Warburg effect. Targets identified in these novel and diverse FH-deficient models represent excellent potential candidates for further mechanistic investigation and therapeutic metabolic manipulation in tumors.

Original publication

DOI

10.1158/0008-5472.CAN-10-1949

Type

Journal article

Journal

Cancer Res

Publication Date

15/11/2010

Volume

70

Pages

9153 - 9165

Keywords

Animals, Carcinoma, Renal Cell, Cell Proliferation, Cells, Cultured, Embryo, Mammalian, Female, Fibroblasts, Fumarate Hydratase, Gene Expression Profiling, Gene Expression Regulation, Enzymologic, Glycolysis, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Kidney Neoplasms, Leiomyomatosis, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Muscle, Smooth, Neoplasms, Oligonucleotide Array Sequence Analysis, Reverse Transcriptase Polymerase Chain Reaction, Spectral Karyotyping