Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The particular virulence of Plasmodium falciparum compared with the other malaria species which naturally infect humans is thought to be due to the way in which the parasite modifies the surface of the infected red cell. Approximately 16 hours into the asexual cycle, parasite encoded proteins appear on the red cell surface which mediate adherence to a variety of host tissues. Binding of infected red cells to vascular endothelium, a process which occurs in all infections, is thought to be an important factor in the pathogenesis of severe disease where concentration of organisms in particular organs such as the brain occurs. Binding to uninfected red cells to form erythrocyte rosettes, a property of some isolates, is linked to disease severity. Here we summarise the data on the molecular basis of these interactions on both the host and parasite surfaces and review the evidence for the involvement of particular receptors in specific disease syndromes. Finally we discuss the relevance of these data to the development of new treatments for malaria.

Type

Journal article

Journal

Int J Parasitol

Publication Date

06/1999

Volume

29

Pages

927 - 937

Keywords

Animals, Cell Adhesion, Erythrocyte Membrane, Erythrocytes, Humans, Malaria, Falciparum, Membrane Proteins, Plasmodium falciparum, Protozoan Proteins