Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The artificial chromosome represents a useful tool for gene transfer, both as cloning vectors and in chromosome biology research. To generate a Plasmodium artificial chromosome (PAC), we had to first functionally identify and characterize the parasite's centromere. A putative centromere (pbcen5) was cloned from chromosome 5 of the rodent parasite P. berghei based on a Plasmodium gene-synteny map. Plasmids containing pbcen5 were stably maintained in parasites during a blood-stage infection with high segregation efficiency, without drug pressure. pbcen5-containing plasmids were also stably maintained during parasite meiosis and mitosis in the mosquito. A linear PAC (L-PAC) was generated by integrating pbcen5 and telomere into a plasmid. The L-PAC segregated with a high efficiency and was stably maintained throughout the parasite's life cycle, as either one or two copies. These results suggest that L-PAC behaves like a Plasmodium chromosome, which can be exploited as an experimental research tool.

Original publication

DOI

10.1016/j.chom.2010.02.010

Type

Journal

Cell Host Microbe

Publication Date

18/03/2010

Volume

7

Pages

245 - 255

Keywords

Centromere, Chromosomes, Chromosomes, Artificial, Cloning, Molecular, Genetic Engineering, Genetic Vectors, Genetics, Microbial, Plasmodium berghei